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Abstract

Purpose – The purpose of this paper is to investigate the thermal convection inside a spatially
modulated domain.
Design/methodology/approach – The governing equations are mapped onto an infinite strip,
allowing Fourier expansion of the flow and temperature in the streamwise direction.
Findings – Similar to Rayleigh-Benard convection, conduction is lost to convection at a critical
Rayleigh number, which depends strongly on both the modulation amplitude and the wavenumber.
The effect of modulation is found to be destabilizing (stabilizing) for conduction for relatively large
(small) modulation wavelength. Oscillatory convection sets in as the Rayleigh number is increased.
Originality/value – This paper presents novel results.
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1. Introduction
Thermal convection and flow in a micro-channel with modulated walls is a classical
problem that has attracted renewed interest because of its immediate relevance to
novel micro-technologies, such as compact heat exchangers, and membrane blood
oxygenators in extra-corporeal systems (Sobey, 1980). Moreover, the analysis of such
flows can help understand the generation of wind waves due to the change in the
surface of the earth temperature as well as the atmosphere (Tritton, 1988). The flow can
exhibit many of the features present in much more complex geometries, which can
significantly impact heat or mass transfer performance. This richness in physical
phenomena in a relatively simple geometry motivates fundamental interest by
providing an ideal setting to understand pattern formation for both Newtonian and
non-Newtonian fluids (Drazin and Reid, 1981).

The effects of spatial wall variations on the steady flow between smooth boundaries
were examined only relatively recently. The reader is referred to Zhou et al. (2003)
for details and bibliography therein. One may refer to such variations from perfect
geometries as dirty effects. On the other hand (Schmitz and Zimmerman, 1996a), these
deviations can lead to interesting phenomena, which are not present in systems of
regular geometrical variation. Sidewalls, for example, may restrict the structure of
stable wave numbers for cellular patterns or modify the orientation of convection rolls
(Schmitz and Zimmerman, 1996b; Stork and Miller, 1972; Thompson et al., 1985).
Reflection effects (Cross, 1988) or dynamical structures (Ning and Ecke, 1993) can be
induced in systems like rotating Rayleigh-Bénard convection. Irregularities at the
boundaries may lead to localized cellular structures at the threshold of convection,
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similar to those of gravity waves (Dimitropoulos et al., 1998). Such phenomena
modify the bifurcation behavior of cellular structures, as shown for a model system
(Zimmerman et al., 1993).

To gain insight on the effects of roughness in pattern formation, it is often helpful to
have it replaced with periodic modulations. One may replace, for instance,
imperfections at the boundaries in convection by temperature variations and analyze
their consequences for the onset of convection. Davis (1976) studied the case of
temporal periodic variations. Kelly and Pal (1978) examined the effects of spatially
periodic boundary conditions on the stability of the Rayleigh-Bénard problem. Chen
and Whitehead (1968) evaluated the extent to which well-defined initial perturbations
affect stable boundaries, although they were steady in time. The practical value is that
one might want to make the boundary wavy if the mean Nusselt number could be
increased, which have motivated Watson and Poots (1971) to study the effects of wavy
boundaries on laminar free convection in a flow between parallel vertical walls.

Other modulated systems have also been examined by Khayat and co-workers, such
as the flow through sinusoidally shaped channels. Steady flow (Zhou et al., 2002, 2003),
as well as stability aspects were considered (Selvarajan et al., 1999; Szumbarski and
Floryan, 1999). One of the major difficulties compared to typical linear stability
analyses is the absence of analytical solution for the base flow analyzed. This is also
the case for modulated rotating flow, of closer relevance to the current problem of
thermal convection. Li and Khayat (2004) showed the existence of intricate steady
pattern formation, but limited their formulation to weakly modulated Taylor-Couette
flow. Finite amplitude forcing was later considered by Zhang and Khayat (2006). This
problem may be viewed as the counterpart to the current problem in modulated
thermal convection.

Pattern formation is related to finite size or inhomogeneity effects. In this work, the
effect of spatial modulation on steady conduction and thermal convection, as well as their
stability are examined. The flow and temperature fields are obtained by mapping the
physical domain onto the rectangular computation domain, and using a combined
Galerkin projection and spectral methodology. The influence of the Rayleigh number,
dimensionless wave number and amplitude on the flow and heat transfer is emphasized.

2. Problem formulation and solution procedure
In this section, the general equations and boundary conditions for the transient and
steady-state flow of a Newtonian fluid in a spatially modulated channel are presented.
The equations are mapped over a rectangular domain, reducing the problem.

2.1 Governing equations and boundary conditions
Consider the flow of an incompressible Newtonian fluid lying horizontally between two
infinite rigid stationary boundaries, the lower being straight and the upper periodically
modulated. Let T0 and T0 þ dT be the temperatures of the upper and lower plates,
respectively, with dT being the temperature difference. The problem is first introduced
in the (X, Z) plane, with the X-axis taken along the lower wall and the Z-axis along the
direction perpendicular to the plates. The general shapes of the lower and upper plates
are given by Z ¼ 0 and D þ F(X), respectively, where D is a typical (mean) channel
height and F(X) is a general function of X that may be arbitrarily prescribed. In this
work, however, a sinusoidal modulation will be considered. Figure 1 illustrates
schematically the flow configuration, with dimensionless notations being used. The
current formulation is easily extended to other configurations, such as the modulation
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of both the lower and upper plates, sinusoidally or otherwise, as long as the modulation
is periodic in X.

The fluid is assumed to be incompressible of density r and viscosity m. In this study,
the Boussinesq approximation is assumed to hold, which states that the effect of
compressibility is negligible everywhere in the conservation equations except in the
buoyancy term, i.e. that density differences are sufficiently small to be neglected,
except where they appear in terms multiplied by g, the acceleration due to gravity. The
fluid of main interest is assumed to obey the following equation of state:

r ¼ r0½1� aTðT� T0Þ�; ð1Þ

where r0 is the density at T0 and aT is the coefficient of volumetric expansion. In this
case, the equations for conservation of mass, momentum and energy read, respectively:

r �U ¼ 0;

r0ðUs þU � rUÞ ¼ �rPþ mr2Uþ rg;

TS þ U � rT ¼ kr2T;

ð2Þ

where U(U,W) is the velocity vector, r is the two-dimensional gradient operator, S is
time, P is the hydrostatic pressure, g is the acceleration vector due to gravity, k is the
thermal diffusivity and T is the temperature. The subscript S denotes partial
differentiation with respect to time. The two boundaries are treated as slip surfaces.
The dimensionless co-ordinates, x and z, time, t and velocity components, u and w, are
introduced as:

x ¼ X

D
; z ¼ Z

D
; t ¼ k

D2
S; u ¼ DU

k
; w ¼ DW

k
; ð3aÞ

while the departures in temperature, u, and pressure, p, from the pure conduction state
temperature, TSS, and pressure, PSS, as well as the temperature departure, v, from T0,
are given by:

u ¼ T� Tss

dT
; p ¼ D2

mk
ðP� PssÞ; v ¼ Tss � T0

dT
: ð3bÞ

Figure 1.
Schematic illustrating the

physical domain and
thermal convection

between straight lower
plate and spatially

modulated upper plate
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Here, pure conduction is referred to the state of the fluid at rest. In this case, PSS is of
hydrostatic character. Two dimensionless groups emerge in the problem, namely, the
Rayleigh number and the Prandtl number:

Ra ¼ dTr0gaTD3

mk
; Pr ¼ m

r0k
: ð4Þ

In this case, Equations (2) reduce to:

ux þ wz ¼ 0;

ut þ uux þ wuz ¼ Prð�u� pxÞ;
wt þ uwx þ wwz ¼ Prð�w� pz þ RauÞ;
ut þ uðuþ vÞx þ wðuþ vÞz ¼ �u;

ð5Þ

where a subscript denotes partial differentiation. Note that vðx; zÞ is governed
by Laplace’s equation. The problem (5) is defined over the physical domain
Vxz ¼ fðx; zÞjx 2 ½0; 2p=a�; z 2 ½0; 1þ fðxÞ�g, which is next mapped onto the
rectangular domain. The physical domain and flow configuration are schematically
illustrated in Figure 1. Here fðxÞ ¼ b sinðaxÞ is the deviation in the modulated upper
boundary from its mean value, with a and b being the wavenumber and amplitude
(normalized by D�1 and D), respectively.

2.2 Domain transformation
In contrast to the convection between flat plates, the flow and the temperature in the
current situation are not periodic in the streamwise direction given the competition
between the imposed modulation of wavenumber a and the ‘‘natural’’ or spontaneous
disturbance of wavenumber k. However, if the problem is solved over an infinite strip
of constant height, the flow and the temperature variables can still be taken as Fourier
series in the streamwise direction with basic wavenumber k. For this, the periodic
physical domain Vxz is mapped onto the rectangular domain
Vjh ¼ fðj;hÞjj 2 ½0; 2p=a�;h 2 ½0; 1�g following the transformation:

tðx; z; tÞ ¼ t; jðx; z; tÞ ¼ x; hðx; z; tÞ ¼ z

1þ f
: ð6Þ

Applying the transformations, Equations (5) become:

uj � h
f0

1þ f
uh þ

1

1þ f
wh ¼ 0; ð7aÞ

ut þ u uj � h
f0

1þ f
uh

� �
þ w

1

1þ f
uh

¼ Pr

h � f00

1þ f
þ 2

f0

1þ f

� �2
 !

uh � 2h
f0

1þ f
uhj þ ujj

þh2 f0

1þ f

� �2

uhh þ
1

1þ f

� �2

uhh � pj � h
f0

1þ f
ph

� �
2
66664

3
77775; ð7bÞ
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wt þ u wj � h
f0

1þ f
wh

� �
þ w

1

1þ f
wh

¼ Pr

h � f00

1þ f
þ 2

f0

1þ f

� �2
 !

wh � 2h
f0

1þ f
whj þ wjj

þh2 f0

1þ f

� �2

whh þ
1

1þ f

� �2

whh �
1

1þ f
ph þ Rau

2
66664

3
77775;

ð7cÞ

ut þ u uj � h
f0

1þ f
uh

� �
þ w

1

1þ f
uh þ u vj � h

f0

1þ f
vh

� �
þ w

1

1þ f
vh

¼ h � f 00

1þ f
þ 2

f0

1þ f

� �2
 !

uh � 2h
f0

1þ f
uhj þ ujj þ

1

1þ f

� �2

½ðhf0Þ2 þ 1�uhh;

ð7dÞ

Regarding the boundary conditions, no penetration condition is assumed to hold at the
two bounding surfaces regardless of the nature of the surfaces. In other words, the
surfaces are assumed to be impermeable. The temperature is assumed fixed at the two
surfaces. In this work, the two boundaries are assumed to be slip surfaces. Although
less realistic than the rigid-rigid conditions, the free-free conditions adopted here have
been extensively used in the literature on Rayleigh-Benard convection as they allow the
expansion of the flow and temperature fields in terms of trigonometric functions in the
transverse direction. More importantly, one does not expect any qualitative difference
in flow behavior if one set of conditions or the other are used. Indeed, Khayat (1999)
confirmed this similarity in behavior for Taylor-Couette flow. For this reason, the free-
free conditions are used here since the current formulation and results collapse onto
those for the traditional Rayleigh-Benard convection in the limit of flat bounding
surfaces. Thus, the boundary conditions at the top and bottom boundaries for velocity
and departure in temperature reduce to:

uhðj;h ¼ 0; tÞ ¼ wðj;h ¼ 0; tÞ ¼ uðj;h ¼ 0; tÞ
¼ uhðj;h ¼ 1; tÞ ¼ wðj;h ¼ 1; tÞ ¼ uðj;h ¼ 1; tÞ ¼ 0:

ð8aÞ

In addition, periodic conditions are imposed in the streamwise direction, or:

uðj;h; tÞ ¼ u jþ 2p

k
;h; t

� �
; wðj;h; tÞ ¼ w jþ 2p

k
;h; t

� �
;

uðj;h; tÞ ¼ u jþ 2p

k
;h; t

� �
;

ð8bÞ

where k is a wave number to be specified later. Finally, the pure conduction state is
governed by:

vjj þ a2½ðhf0Þ2 þ 1�vhh � 2haf0vjh þ h½2ðaf0Þ2 � af00�vh ¼ 0; ð9Þ
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subject to vðj;h ¼ 0Þ ¼ 1 and vðj;h ¼ 1Þ ¼ 0. In addition to the conditions at the two
boundaries, periodic conditions will be used. In this case, vðj;hÞ ¼ v jþ ð2p=aÞ;hð Þ.
The problem is now solved using a combined spectral/Galerkin approach.

2.3 Solution for the conduction state
A Galerkin projection method is used to solve the problem. The solution corresponding
to pure conduction is expressed in Fourier series of fundamental wavelength equal to
2p=a. Thus:

vðj;hÞ ¼
XN

n¼0

½Ac
nðhÞ cos najþ Bs

nðhÞ sin naj�; ð10Þ

which, upon substituting in Equation (9) and projecting over the interval j 2 0; 2p=a½ �,
lead to a set of ordinary differential equations for the coefficients, which must be solved
subject to Ac

0ð0Þ ¼ 1;Ac
n>0ð0Þ ¼ Bs

n>0ð0Þ ¼ 0 and Ac
n�0ð1Þ ¼ Bs

n>0ð1Þ ¼ 0. Reasonable

convergence is reached by including only a few modes. The following equations are
given for the coefficients corresponding to N ¼ 1:

A0
hh ¼

1

ðh�aÞ2 þ 2
½�3hð�aÞ2A0

h þ 2�a2Bs þ h�a2Bs
h�;

Ac
hh ¼

1

3ðh�aÞ2 þ 4
½a2ð�2 þ 4ÞAc � 9hð�aÞ2Ac

h�;

Bs
hh ¼

1

ðh�aÞ2 þ 4
½�4h�a2A0

h þ a2ð3�2 þ 4ÞBs � 3hð�aÞ2Bs
h�:

ð11Þ

Note in this case that A0 ¼ Ac
0;A

c ¼ Ac
1;B

s ¼ Bs
1. System (11) is solved as a two-point

boundary-value problem using a finite-difference scheme with deferred correction,
coupled with a modified Newton-Raphson method (see, for instance, Rangan, 2003
for details).

2.4 Solution procedure for the convection state
For convection, the solution is sought by expanding the velocity, pressure and
temperature as Fourier series in j, of fundamental wavenumber k, with the expansion
coefficients depending on h (and time). Thus, the flow and temperature fields are
assumed to be periodic in the j direction with wavelength 2p=k:

uðj;h; tÞ ¼ U0ðh; tÞ þ Ucðh; tÞ cosðkjÞ þ Usðh; tÞ sinðkjÞ;
wðj;h; tÞ ¼ W0ðh; tÞ þWcðh; tÞ cosðkjÞ þWsðh; tÞ sinðkjÞ;
pðj;h; tÞ ¼ P0ðh; tÞ þ Pcðh; tÞ cosðkjÞ þ Psðh; tÞ sinðkjÞ;
uðj;h; tÞ ¼ u0ðh; tÞ þ ucðh; tÞ cosðkjÞ þ usðh; tÞ sinðkjÞ:

ð12Þ

Upon substitution into Equations (7) and projecting onto the various modes, a set of
coupled partial differential equations are obtained, which are given in the Appendix.
The steady-state coefficients are obtained using a finite difference method in h similar
to above. Unlike the convection between two flat plates, only a few modes are needed in
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order to preserve all the nonlinearities. The method of solution follows closely that of
Zhang and Khayat (2006), and will therefore not be discussed here.

It is important to emphasize that while the temperature field (10) for pure
conduction has the same spatial periodicity as the geometrical modulation of the upper
plate, the convective field (12) is not commensurate with the plate modulation. In fact, it
is not difficult to conclude, upon inspecting transformation (6) and expansions (12),
that the convective field has no spatial periodicity.

3. Results and discussion
In this section, steady convection patterns and their stability are analyzed for different
flow and geometrical parameters. Similarly to Rayleigh-Benard convection between
two flat plates, steady conduction loses its stability to steady convection at a critical
Rayleigh number, RaC, which depends not only on the disturbance wavenumber k, but
also on the modulation wavenumber, a, and amplitude, b. As the Rayleigh number
increases, the steady convective pattern loses its stability in turn to oscillatory
convection at a Rayleigh number RaH. In the sequel, it is convenient to introduce the
modulation wavelength la � 2p=a and the disturbance wavelength lk � 2p=k.

Consider first pure conduction, which will be taken as reference later on. Figure 2
illustrates typically the temperature distribution in the modulated domain over one
wavelength. The figure shows the influence of modulation amplitude, b for a ¼ 1. Note
in this case that the solution has the same wavelength as that of the imposed
modulation. In the absence of modulation ðb ¼ 0Þ, the temperature distribution is of
course linear. As b increases, a nonlinear temperature distribution emerges, with a
temperature gradient larger near the upper plate than at the bottom.

3.1 Modulation at low wavenumber
The influence of modulation amplitude, b, is shown in Figure 3 for Pr ¼ 10,
modulation and flow wavenumbers a ¼ 1 and k ¼ p=

ffiffiffi
2
p

, respectively. Both the
flow field and temperature contours are depicted. Note that for this modulation
wavenumber the critical disturbance wavenumber for any modulation amplitude is
very close to that corresponding to the convection between two flat plates, therefore the
choice of the above k value in this case (see below). The patterns in Figure 3 are plotted
over one modulation wavelength, in this case x 2 ½0; la ¼ 2p�. Clearly, the flow and
temperature patterns do not change in periodicity even under large modulation
amplitude (as for b ¼ 0:9). The convection pattern becomes simply distorted due to the
expansion and contraction resulting from modulation. However, it is interesting to note
the loss of the warm (bright) regions, which decrease essentially by half relative to the
b ¼ 0 case (see Figure 3 for b ¼ 0:9).

The rate of heat transfer is significantly influenced by modulation. Figure 4
displays the dependence of the local Nusselt number, Nu(x), on the modulation
amplitude for the same parameters as in Figure 3. Note that NuðxÞ ¼ 1� ð@u=@zÞjz¼0.
It is interesting to observe that the response in convection rate is highly nonlinear with
respect to modulation amplitude. The figure shows that the rate of convection is
essentially unaffected by modulation amplitude for b < 0:6. At larger amplitude, there
is a significant increase in convection rate resulting from domain contraction (see
Figures 3 and 4 for b ¼ 0:9). In contrast, there is barely any change in Nu(x) over the
range 0 < x < �, where considerable domain expansion has occurred. The influence of
modulation amplitude on the overall rate of convection is depicted in Figure 5, where
the Nusselt number, hNU(x)i, averaged over a wavelength is plotted against Ra for
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a ¼ 1. The curves in Figure 5 reflect simultaneously the bifurcation picture as the
exchange in stability between conduction and convection takes place at the critical
Rayleigh number. The figure shows that the overall rate of convection tends to increase
with modulation amplitude as the critical Rayleigh number decreases, albeit
nonmonotonically. Thus, modulation tends to enhance the onset and magnitude of
convection.

The corresponding marginal stability curves are shown in Figure 6, where the
critical Rayleigh number, RaC, is plotted against k for different b values. The curves are
plotted over the range 0 � Ra � 7,000 in Figure 6a and 250 � Ra � 1,000 in Figure
6b. Figure 6a suggests that the overall range of stability of the conduction state

Figure 2.
Temperature distribution
of the pure conduction
state over one modulation
wavelength, x 2 ½0; 2p�,
for Ra ¼ 200, a ¼ 1 and
Pr ¼ 10
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increases with modulation amplitude. This is particularly obvious from the small k
range. In this range, a second and sharper minimum appears for b > 0. For large k, the
stability picture is essentially uninfluenced by b. While the minimum critical Rayleigh
number, Ram

c � RacðkmÞ, depends significantly on modulation amplitude, the
corresponding wavenumber, km, remains close to k ¼ p=

ffiffiffi
2
p

. This is confirmed by the
locus of minimum values shown in Figure 6b. As the Rayleigh number increases
beyond RaC, steady convection is lost to oscillatory convection (via a Hopf bifurcation)
at a critical Rayleigh number RaH.

Figure 7 shows the dependence of the critical thresholds for the onset of steady
convection (Figure 7a) and oscillatory convection (Figure 7b), along with the
corresponding oscillatory frequency (Figure 7c). Here k ¼ p=

ffiffiffi
2
p

and a ¼ 1. Figure 7
illustrates the range of stability of steady convection, i.e. for Rac < Ra < RaH. Figure

Figure 3.
Influence of modulation

amplitude ß on flow and
temperature over one

modulation wavelength,
x 2 ½0; 2p�, for Ra ¼ 900,

a ¼ 1, Pr ¼ 10 and
k ¼ p=

ffiffiffi
2
p
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7a shows that Rac decreases with modulation amplitude roughly following
Rac ¼ �267 logbþ 284. Figure 7b shows the variation of RaH, which also decreases
with b at approximately the same rate as Rac, following RaH ¼ �7;694 logbþ 4;006.
Thus, it seems that the range of stability Rac < Ra < RaH is essentially unaffected by

Figure 4.
Influence of modulation
amplitude on the
distribution of the Nusselt
number over one
modulation wavelength,
x 2 ½0; 2p�, for Ra ¼ 900,
a ¼ 1, Pr ¼ 10 and
k ¼ p=

ffiffiffi
2
p

Figure 5.
Influence of modulation
amplitude on the overall
Nusselt number for
a ¼ 1, Pr ¼ 10 and
k ¼ p=

ffiffiffi
2
p
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domain modulation. The corresponding distribution of the frequency is given in Figure
7c, which indicates that oscillatory convection sets in at a frequency that decreases
with modulation amplitude.

3.2 Modulation at high wavenumber
For small modulation wavenumber, the response of the flow and heat transfer is rather
commensurate with modulation amplitude. Thus, in general, convection is enhanced
by the amplitude. As will now be reported, this is not the case at high modulation
wavenumber. Consider first the dependence of the convection patterns displayed in

Figure 6.
Influence of modulation

amplitude on the neutral
stability curves

corresponding to the loss
of stability of pure

conduction and the onset
of thermal convection,

over two different ranges
of critical Rayleigh

number (Figures 6a and
b) for a ¼ 1
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Figure 8 on a for b ¼ 0.6. Given the strong dependence of km on a and b (see later),
each pattern reported in the figure is based on the corresponding km value. The figure
shows that as a increases, the flow and temperature fields become increasingly out of
phase with the domain modulation. This is particularly evident by following the warm
(bright) regions, which tend to be concentrated below the crest (see the flow for a ¼ 1
and 2). For a ¼ 4, the warm and cold regions are almost both alternately beneath the
crest. The velocity field in the figure suggests flow strengthening with increasing

Figure 7.
Influence of modulation
amplitude on the critical
threshold for the onset
of steady convection
(RaC, Figure 7a),
oscillatory convection
(RaH, Figure 7b), and on
the oscillatory frequency
(Figure 7c), for a ¼ 1 and
k ¼ p=

ffiffiffi
2
p
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wavenumber. The velocity scale is kept the same for comparison. The case a ¼ 4
shows, in particular, that the flow is strongest at the modulated surface (which
explains the arrows outside the flow domain). Thus, the response at low and high
modulation wavenumbers can be significantly different. This is further illustrated by
examining the influence of modulation amplitude on the overall rate of convection.
Similarly to Figure 5, Figure 9 depicts the Nusselt number, hNU(x)i, averaged over a
wavelength. In this case, a is set to 2. However, in contrast to Figure 5, Figure 9 shows
that the overall rate of convection tends to decrease with modulation amplitude as
the critical Rayleigh number increases. Thus, whereas modulation in the case a ¼ 1
enhances the onset of convection, modulation tends to delay the onset of convection
when a is larger than 1 (more precisely a > 1.3 as will be shown below).

Figure 8.
Influence of modulation

wavenumber a on
temperature and vector

fields over two
disturbance wavelengths,

x 2 [0, 4p/k], for
Ra ¼ 7,000, ß ¼ 0.6,
Pr ¼ 10 and k ¼ km
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Figure 10 shows the influence of b on the marginal stability curves for a ¼ 2 over
relatively narrow (Figure 10a) and wide (Figure 10b) ranges of critical Rayleigh
number. In contrast to the curves in Figure 6, the curves in Figure 10 indicate that both
the critical Rayleigh number and corresponding disturbance wavenumber increase
with b. This is a strikingly different response compared to the a ¼ 1 case, which
seems to suggest that the onset of convection is delayed and happens over a narrower
range of k values. For higher value of a, the response is even more complex, as
demonstrated in Figure 11, which shows the marginal stability curves for b ¼ 0.6. In
this case, the typical parabolic shape expected for the marginal stability curve gives
way to a wavy response here evident for a ¼ 3 and 4. The overall influence of the
modulation on the stability threshold is illustrated in Figure 12, which depicts
the dependence of Ram

c on both a and b. Typically, for a given modulation amplitude,
the critical Rayleigh number tends to decrease at small a, reaches a minimum and
increases essentially monotonically with a.

4. Concluding remarks
The thermal convection inside a spatially modulated channel is investigated in the
present work. The governing equations are mapped onto a rectangular domain, which
allows the solution to become periodic in the streamwise direction. Similarly to
Rayleigh-Benard convection, conduction is lost to convection at a critical Rayleigh
number. However, this critical value, RaC, depends strongly on both the modulation
amplitude and wavenumber. For a large modulation wavelength, RaC decreases with
modulation amplitude. Beyond a critical a value (a � 1.3), RaC increases with
modulation amplitude. Steady convection loses its stability in turn to oscillatory
convection as Ra is increased further.

From a practical perspective, the study and results reported are applicable to a
wide variety of problems where thermal convection occurs in variable geometry. In

Figure 9.
Influence of modulation
amplitude on the overall
Nusselt number for
a ¼ 2, Pr ¼ 10 and
k ¼ km
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particular, the convection in heat exchangers is a prime example. The current
formulation is easily extendable to other configurations, such as the modulation of both
the lower and upper plates, sinusoidally or otherwise, as long as the modulation is
periodic in the x direction. In this case, there is no need to alter the solution
methodology, which still consists of domain mapping, spectral expansion of the
velocity, pressure and temperature, Galerkin projection and solution of the projected
equations.

Figure 10.
Influence of modulation

amplitude on the neutral
stability curves over two

different ranges of critical
Rayleigh number (Figures

10a and b) for a ¼ 2
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Appendix. Projected equations
Upon substituting expressions (12) into Equation (7a) and projecting, one obtains:

hJ1U0
h þ hJ6Uc

h þ hJ11Us
h þ J2W0

h þ J7Wc
h þ J12Ws

h ¼ 0; ðA1aÞ
pUs þ hJ6U0

h þ hJ21Uc
h þ hJ16Us

h þ J7W0
h þ J22Wc

h þ J17Ws
h ¼ 0; ðA1bÞ

�pUc þ hJ11U0
h þ hJ16Uc

h þ hJ26Us
h þ J12W0

h þ J17Wc
h þ J27Ws

h ¼ 0: ðA1cÞ
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Projecting the streamwise momentum Equation (7b) leads to:

2p

k
U0
t þ kUsUs þ hJ1U0U0

h þ J2W0U0
h þ hJ6U0Uc

h þ J7W0Uc
h þ hJ11U0Us

h

þ J12W0Us
h þ hJ6UcU0

h þ J7WcU0
h þ hJ11UsU0

h þ J12WsU0
h þ hJ21UcUc

h

þ J22WcUc
h þ hJ16UsUc

h þ J17WsUc
h þ hJ16UcUs

h þ J17WcUs
h

þ hJ26UsUs
h þ J27WsUs

hdj

¼ Pr
hJ3U0

h þ hJ51Uc
h þ hJ52Us

h þ ðh2J4 þ J5ÞU0
hh þ ðh2J9 þ J10ÞUc

hh

þðh2J14 þ J15ÞUs
hh � hJ1p0

h � hJ6pc
h � hJ11ps

h

 !
ðA2aÞ

p

k
Uc
t þ pU0Us þ hJ6U0U0

h þ J7W0U0
h þ hJ21U0Uc

h þ J22W0Uc
h þ hJ16U0Us

h

þ J17W0Us
h þ hJ21UcU0

h þ J22WcU0
h þ hJ16UsU0

h þ J17WsU0
h þ hJ31UcUc

h

þ J32WcUc
h þ hJ41UsUc

h þ J42WsUc
h þ hJ41UcUs

h þ J42WcUs
h þ hJ46UsUs

h

þ J47WsUs
h

¼ Pr

�kpUc þ hJ13U0
h þ hJ53Uc

h þ hJ54Us
h þ ðh2J9 þ J10ÞU0

hh

þðh2J24 þ J25ÞUc
hh þ ðh2J19 þ J20ÞUs

hh � pps � hJ6p0
h

�hJ21pc
h � hJ16ps

h

2
664

3
775

ðA2bÞ

p

k
Us
t � pU0Uc þ hJ11U0U0

h þ J12W0U0
h þ hJ16U0Uc

h þ J17W0Uc
h

þ hJ26U0Us
h þ J27W0Us

h þ hJ16UcU0
h þ J17WcU0

h þ hJ26UsU0
h

þ J27WsU0
h þ hJ41UcUc

h þ J42WcUc
h þ hJ46UsUc

h þ J47WsUc
h

þ hJ46UcUs
h þ J47WcUs

h þ hJ36UsUs
h þ J37WsUs

h

¼ Pr

�kpUs þ hJ13U0
h þ hJ55Uc

h þ hJ56Us
h þ ðh2J14 þ J15ÞU0

hh

þðh2J19 þ J20ÞUc
hh þ ðh2J29 þ J30ÞUs

hh þ ppc

�hðJ11p0
h þ J16pc

h þ J26ps
hÞ

2
664

3
775

ðA2cÞ

Projecting the transverse momentum Equation (7c) leads to:

2p

k
W0

t þ pUcWs � pUsWc þ hJ1U0W0
h þ hJ6UcW0

h þ hJ6U0Wc
h þ hJ21UcWc

h

þ hJ11U0Ws
h þ hJ16UcWs

h þ hJ11UsW0
h þ J2W0W0

h þ J7WcW0
h þ J12WsW0

h

þ hJ16UsWc
h þ J7W0Wc

h þ J21W
cWc

h þ J17WsWc
h þ hJ26UsWs

h þ J12W0Ws
h

þ J17WcWs
h þ J26WsWs

h

¼ Pr

hJ3W0
h þ hJ51Wc

h þ hJ52Ws
h þ ðh2J4 þ J5ÞW0

hh þ ðh2J9 þ J10ÞWc
hh

þðh2J14 þ J15ÞWs
hh � J2p0

h � J7pc
h � J12ps

h þ Ra
2p

k
u0

� �
2
64

3
75

ðA3aÞ



Modulated
thermal

convection

35

p

k
Wc

t þ pU0Ws þ hJ6U0W0
h þ hJ21UcW0

h þ hJ21U0Wc
h þ hJ31UcWc

h þ hJ16U0Ws
h

þ hJ41UcWs
h þ hJ16UsW0

h þ J7W0W0
h þ J22WcW0

h þ J17WsW0
h þ hJ41UsWc

h

þ J22W0Wc
h þ J32WcWc

h þ J42WsWc
h þ hJ46UsWs

h þ J17W0Ws
h þ J42WcWs

h

þ J47WsWs
h

¼ Pr

�kpWc þ hJ8W0
h þ hJ53Wc

h þ hJ54Ws
h þ ðh2J9 þ J10ÞW0

hh

þðh2J24 þ J25ÞWc
hh þ ðh2J19 þ J20ÞWs

hh � J7p0
h � J22pc

h

�J17ps
h þ Ra

p

k
uc

� �
2
6664

3
7775

ðA3bÞ

p

k
Ws

t � pU0Wc þ hJ11U0W0
h þ hJ16UcW0

h þ hJ16U0Wc
h þ hJ41UcWc

h þ hJ26U0Ws
h

þ hJ46UcWs
h þ hJ26UsW0

h þ J12W0W0
h þ J17WcW0

h þ J27WsW0
h

þ hJ46UsWc
h þ J17W0Wc

h þ J42WcWc
h þ J47WsWc

h þ hJ36UsWs
h þ J27W0Ws

h

þ J47WcWs
h þ J37WsWs

h

¼ Pr

�kpWs þ hJ13W0
h þ hJ55Wc

h þ hJ56Ws
h þ ðh2J14 þ J15ÞW0

hh

þðh2J19 þ J20ÞWc
hh þ ðh2J29 þ J30ÞWs

hh � J12p0
h � J17pc

h

�J27ps
h þ Ra

p

k
us

� �
2
6664

3
7775

ðA3cÞ

Projecting the energy Equation (7c) leads to:

2p

k
u0
t � pUsuc þ pUcus þ hJ1U0u0

h þ hJ6Ucu0
h þ hJ11Usu0

h þ J2W0u0
h þ J7Wcu0

h

þ J12Wsu0
h þ hJ6U0uc

h þ hJ21Ucuc
h þ hJ16Usuc

h þ J7W0uc
h

þ J22Wcuc
h þ J17Wsuc

h þ hJ11U0us
h þ hJ16Ucus

h þ hJ26Usus
h þ J12W0us

h

þ J17Wcus
h þ J26Wsus

h

þ ð�aA1J63 þ aB1J57 þ hA0
hJ1 þ hA1

hJ69 þ hB1
hJ75ÞU0

þ ð�aA1J64 þ aB1J58 þ hA0
hJ6 þ hA1

hJ70 þ hB1
hJ76ÞUc

þ ð�aA1J66 þ aB1J60 þ hA0
hJ11 þ hA1

hJ71 þ hB1
hJ77ÞUs

þ ðA0
hJ2 þ A1

hJ81 þ B1
hJ87ÞW0 þ ðA0

hJ7 þ A1
hJ82 þ B1

hJ88ÞWc

þ ðA0
hJ12 þ A1

hJ83 þ B1
hJ89ÞWs

¼ hJ3u
0
h þ hJ51u

c
h þ hJ52u

s
h þ ðh2J4 þ J5Þu0

hh þ ðh2J9 þ J10Þuc
hh

þ ðh2J14 þ J15Þus
hh

ðA4aÞ

p

k
uc
t þ pU0us þ hJ6U0u0

h þ hJ21Ucu0
h þ hJ16Usu0

h þ J12W0u0
h þ J22Wcu0

h þ J17Wsu0
h

þ hJ21U0uc
h þ hJ31Ucuc

h þ hJ41Usuc
h þ J22W0uc

h þ J32Wcuc
h þ J42Wsuc

h

þ hJ16U0us
h þ hJ41Ucus

h þ hJ46Usus
h þ J17W0us

h þ J42Wcus
h þ J47Wsus

h

ð�aA1J64 þ aB1J58 þ hA0
hJ6 þ hA1

hJ70 þ hB1
hJ76ÞU0
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þ ð�aA1J67 þ aB1J61 þ hA0
hJ21 þ hA1

hJ73 þ hB1
hJ79ÞUc

þ ð�aA1J66 þ aB1J60 þ hA0
hJ16 þ hA1

hJ72 þ hB1
hJ78ÞUs

þ ðA0
hJ7 þ A1

hJ82 þ B1
hJ88ÞW0 þ ðA0

hJ22 þ A1
hJ85 þ B1

hJ91ÞWc

þ ðA0
hJ17 þ A1

hJ84 þ B1
hJ90ÞWs

¼ �kpuc þ hJ8u
0
h þ hJ53u

c
h þ hJ54u

s
h þ ðh2J9 þ J10Þu0

hh þ ðh2J24 þ J25Þuc
hh

þ ðh2J19 þ J20Þus
hh

ðA4bÞ

p

k
us
t � pU0uc þ hJ11U0u0

h þ hJ16Ucu0
h þ hJ26Usu0

h þ J12W0u0
h þ J17Wcu0

h þ J27Wsu0
h

þ hJ16U0uc
h þ hJ41Ucuc

h þ hJ46Usuc
h þ J17W0uc

h þ J42Wcuc
h þ J47Wsuc

h

þ hJ26U0us
h þ hJ46Ucus

h þ hJ36Usus
h þ J27W0us

h þ J47Wcus
h þ J37Wsus

h

þ ð�aA1J65 þ aB1J59 þ hA0
hJ11 þ hA1

hJ71 þ hB1
hJ77ÞU0

þ ð�aA1J66 þ aB1J60 þ hA0
hJ16 þ hA1

hJ72 þ hB1
hJ78ÞUc

þ ð�aA1J68 þ aB1J62 þ hA0
hJ26 þ hA1

hJ74 þ hB1
hJ80ÞUs

þ ðA0
hJ12 þ A1

hJ83 þ B1
hJ89ÞW0 þ ðA0

hJ17 þ A1
hJ84 þ B1

hJ90ÞWc

þ ðA0
hJ27 þ A1

hJ86 þ B1
hJ92ÞWs

¼ �kpus þ hJ13u
0
h þ hJ55u

c
h þ hJ56u

s
h þ ðh2J14 þ J15Þu0

hh

þ ðh2J19 þ J20Þuc
hh þ ðh2J29 þ J30Þus

hh

ðA4cÞ

The coefficients J1, J2, . . . are constants.
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